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A ABSTRACT

A parametric study of the buckling behavior of infinitely long symmetrically
laminated anisotropic plates subjected to combined loadings is presented. The
loading conditions considered are axial tension and compression, transverse tension
and compression, and shear. Results obtained using a special purpose analysis,
well suited for parametric studies are presented for clamped and simply supported
plates. Moreover, results are presented for some common laminate constructions,
and generic buckling design charts are presented for a wide range of parameters.
The generic design charts are presented in terms of useful nondimensional
parameters, and the dependence of the nondimensional parameters on laminate fiber
orientation, stacking sequence, and material properties is discussed.

An important finding of the study is that the effects of anisotropy are much
more pronounced in shear-loaded plates than in compression-loaded plates. In
addition, the effects of anisotropy on plates subjected to combined loadings are
generally manifested as a phase shift of self-similar buckling interaction curves.
A practical application of this phase shift is that the buckling resistance of long
plates can be improved by applying a shear loading with a specific orientation. In
all cases considered in the study, it is found that the buckling coefficients of
infinitely long plates are independent of the bending stiffness ratio

(0,,/D; )%,

INTRODUCTION

Buckling behavior of laminated plates is a topic of fundamental importance in
the design of aerospace vehicle structures. Often, the sizing of many
subcomponents of these vehicles is determined by stability constraints in addition
to other constraints such as stiffness and strength. One typical subcomponent that
is of great practical importance in structural design is the long rectangular
plate. These plates routinely appear as subcomponents of stiffened panels used for
wings, ribs, and spars. In addition, long plates commonly appear as subcomponents
of semi-monocoque shells used for fuselage structure, liquid-propellant booster
tankage, and booster interstage structure. Buckling results for infinitely long
plates are important because they provide a lower bound on the behavior of finite-
length rectangular plates, and provide information that is useful in explaining the
behavior of finite-length plates.

Understanding the buckling behavior of symmetrically laminated plates is an
important part of the search for ways to exploit plate orthotropy and anisotropy to
reduce structural weight of aircraft and launch vehicles. Symmetrically laminated
plates can exhibit anisotropy in the form of material-induced coupling between pure
bending and twisting deformations. This coupling generally yields buckling modes

* Senior Research Engineer, Aircraft Structures Branch.

227



that are skewed in appearance, as depicted in figure 1. The effects of anisotropy
on the buckling behavior of these compression-loaded plates are well known (e.g.,
references 1 and 2). However, the affects of anisotropy on symmetrically laminated
plates subjected to shear loadings and various other combined loadings are
generally not as well understood.

Symmetrically laminated plates can have many different constructions because
of the wide variety of material systems, fiber orientations, and stacking sequences
that can be used to construct a laminate. Thus, it is extremely useful for the
designer to have a means of asgessing the performance of various laminated plates
on a common, and unbiased, basis. The use of nondimensional parameters can provide
this means for assessing laminate performance. Moreover, the use of nondimensional
parameters permits buckling results to be presented in a concise manner as a series
of generic curves, on one or more plots, that span the complete range of plate
dimensions, loading combinations, boundary conditions, laminate construction, and
material properties. An added benefit is that the generic curves also furnish the
designer with an overall indication of the sensitivity of the structural response
to changes in the design parameters. Examples of generic design charts, for
buckling and postbuckling of orthotropic plates, that use nondimensional parameters
are presented in references 3 and 4.

The major objectives of the present paper are to indicate the effects of plate
bending orthotropy and anisotropy on the buckling of plates subjected to combined
loads, and to present generic design charts that indicate the buckling behavior of
long plates for a wide range of parameters in a concise manner. The loading
conditions considered in this paper are axial tension and compression, transverse
tension and compression, and shear loadings. Results are presented herein for
plates with the two opposite long edges clamped or simply supported. A substantial
number of generic buckling curves are presented in the present paper that are
applicable to a wide range of laminate constructions.

SYMBOLS
An, Bm displacement amplitudes (see eq. (8)), in.
b plate width (see fig. 1), in.
Dyys Dy2y Daa, Dgg orthotropic plate bending stiffnesses, in.-1b
Dye¢» D3¢ anisotropic plate bending stiffnesses, in.-1b
E,, E;, Gy, lamina moduli, psi
Kx, Ky, Ks' ‘ nondimensional buckling coefficients associated with axial
compression, transverse compression, and shear loadings
n laminate stacking seduanca number
Nx' Ny' ny membrane prebuckling stress resultants (see fig. 1),

1b/in.
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N:r, N;r, N:; values of the membrane strésé resultants at buckling,
1b/in.

P Ecr nondimensional loading parameter and corresponding value
at buckling

X, ¥y plate coordinate system (see fig. 1), in.

Vi out-of-plane displacement field at buckling (see eq. (8)),
in.

a, B, v, § nondimensional parameters defined by eqs. (1) through (4)

A half-wave length of buckling mode (see fig. 1), in.

n =y/b, £ = x/) nondimensional plate coordinates

Via lamina major Poisson's ratio

Qm’ Wm kinematically admissible basis functions (see eq. (8))

[ fiber orientation angle (see fig. 1), deg.

APPROACH

The objectives of the present study are achieved herein in two different ways.
In the first way, the effects of plate orthotropy and anisotropy are presented in
an implicit manner for symmetrically laminated angle-ply plates. This family of
laminates is denoted herein by the symbols [(10)m]s, where @ 1is the fiber

orientation angle shown in figure 1 (given in units of degrees) and m is the
stacking sequence number that indicates the number of times the plies in
parentheses are repeated. This family of laminates was chosen since varying the
laminate parameters # and m encompasses a wide range of plate bending
orthotropy and bending anisotropy. The term implicit is used above to reflect the
fact that for the angle-ply laminates, as well as for all other laminates, the
plate orthotropy and anisotropy are implicit functions of laminate fiber
orientation and stacking sequence and do not typically vary independently. This
implicit way of assessing plate behavior is generally the approach that is the most
familiar to aerospace vehicle designers.

A second way to characterize the effects of plate orthotropy and anisotropy
uses the nondimensional parameters presented in reference 1. These nondimensional
parameters are used in the present paper to show the effects of plate orthotropy
and anisotropy on buckling behavior in a somewhat more explicit manner. For
example, buckling results are presented in the present paper as a function of two
parameters that characterize plate orthotropy and two parameters that characterize
plate anisotropy. By varying each parameter in a systematic manner, the effects of
orthotropy and anisotropy on buckling can be assessed independently. An important
. step in this assessment {8 to establish an understanding of how laminate fiber

orientation, stacking sequence, and material properties affect the values of the
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nondimensional parameters. Thus, results are also presented herein that indicate
the effects of laminate construction on the nondimensional parameters for a few
selected laminates. Material properties considered herein are representative of
high-strength graphite-epoxy material, ultra-high-modulus graphite-epoxy material,
S-glass-epoxy material, Kevlar-epoxy material, boron-epoxy material, and boron-
aluminum material.

ARALYSIS DESCRIPTION

Often in preparing generic design charts for buckling of a single plate
element, a special purpose analysis is preferred over a general purpose analysis
code, such as a finite element code, due to the cost and effort involved in
generating a large number of results with a general purpose analysis code. The
results presented in the present paper have been obtained using such a special
purpose analysis. A brief description of the analysis is presented subsequently.

The buckling analysis used in the present study is based on the classical
Rayleigh-Ritz variational method, and is derived explicitly in terms of the
nondimensional parameters defined in reference 1. Deriving the analysis in this
manner inherently makes the resulting computer code well suited for parametric
studies. The nondimensional parameters used are given by

a =20,/ 1)
Dy o+ 2Dg,
pm— e
D11D22
Dl‘ (3)
oD
(D1303) 7
5 DQC (4)
= 3
(D11D22)1/4

where ) 1is the half-wave length of the buckle mode and b is the plate width
shown in figure 1. The subscripted D terms appearing in the equations are the
plate bending stiffnesses of classical laminated plate theory. The parameters o
and g characterize plate bending orthotropy, and the parameters y and §
characterize plate bending anisotropy. The. parameters defined by equations (2)
through (4) depend only on the plate bending stiffnesses, whereas the parameter a
depends on the buckle aspect ratio )/b also. Without loss of generality, and as

a matter of convenience, the nondimensional parameter (D,I/Dzz)l/a is used in the
present study in the place of the parameter a to assess plate bending orthotropy.
In addition to (D,,/D,z) /%

quantities are used to characterize buckling resistance. . The quantities are given
by

, B, 7, and §; three additional nondimensional

230




2
K = 52— (5)

b4 2
7 JDy1D30

T
R, = T (6)
x D,,
2
N;;b
Ke = 2~ 3 1/ N
x (Dy,D;;)

The quantities Kx' Ky’ and Ks are referred to herein as the axial compression

buckling coefficient, the transverse compression buckling coefficient, and the
shear buckling coefficient, respectively. Each of the loading conditions
associated with these buckling coefficients is shown in figure 1. The positive-
valued compressive stress resultants and shear stress resultant corresponding to
the loadings are denoted by Nx’ Ny’ and ny respectively. The stress resultants

appearing in the buckling coefficients correspond to critical values assoclated
with the onset of buckling.

In the buckling analysis, the infinitely long plates are assumed to have
uniform thickness and material properties that do not vary along the plate length
and width. In addition, the uniform biaxial and shear loadings, and the boundary
conditions do not vary along the plate length. Under these conditions, infinitely
long plates have periodic buckling modes that exhibit either inversion symmetry or
inversion antisymmetry with respect to a given reference point. The buckling mode
depicted in figure 1 corresponds to either inversion symmetry or antisymmetry
depending on the selection of the reference point. The presence of the periodicity
and inversion symmetry or antisymmetry in the plate buckling mode aids in
simplifying the buckling analysis.

An important characteristic of an infinitely long plate that possesses a
periodic buckling mode is that a basic repetitive buckle pattern can be identified
from which the overall buckling mode can be constructed by axial translation of the
pattern. The selection of the basic repetitive buckle pattern is not unique, and
thus one may choose it to simplify the buckling analysis further. In the present
study, the basic repetitive buckle pattern was chosen such that it possesses
inversion symmetry about its geometric center. This simplification is important in
that it permits the elimination of superfluous terms in the kinematically
admissible series used to describe the buckling mode, which in turn simplifies the
ensuing analysis and reduces the number of computations required to obtain an
accurate result. The mathematical expression used in the variational analysis to
describe the buckle pattern is given by

N N
wn(f,q) = ginné = Amtm(q) + cosxf{ X Bme(n) (8)
m=1 m=1

where ¢ = x/A and n = y/b are nondimensional coordinates (see figure 1), Vi is

the out-of-plane displacement field, and Am and Bm are the unknown displacement
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amplitudes. In accordance with the Raleigh-Ritz method, the basis functions Qn(q)

and 'n(") are required to satisfy the kinematic boundary conditions on the plate

edges at n = 0 and 1. For the simply supported plates, the basis functions used
in the analysis are given by

Gn(n) = ginZmxy (9a)
ih(q) = gin(2m-1)nn (9b)
for values of m = 1, 2, 3, ..., N. Similarly, for the clamped plates, the basis
functions are given by
Qn(n) = cos(2m-1)nn - cos(2m+l)xy (10a) ;
i-(n) = cos2(m-1)xn - coslmmy (10b)

Algebraic equations governing buckling of long plates are obtained by
substituting the series expansion for the buckling mode given by equation (8) into
the second variation of the total potential energy and then computing the integrals ;
appearing in the second varifation in closed form. The resulting equations :
constitute a generalized eigenvalue problem that depends on the aspect ratio of the
buckle pattern A/b (see figure 1) and the nondimensional parameters defined by
equations (1) through (4). The inplane loadings are expressed in terms of a

loading parameter p that is increased monotonically until buckling occurs. The
smallest eigenvalue of the problem ;cr corresponds to buckling and is found by

specifying a value of A/b and solving the corresponding generalized eigenvalue
problem for its smallest eigenvalue. This process is repeated for successive
values of A/b until the absolute smallest eigenvalue is found. The absolute

smallest eigenvalue corresponds to Ecr'

Results obtained using the analysis described in the present paper were
compared to results for isotropic and specially orthotropic plates published in the
technical literature for several loading cases and boundary conditions (see
references 4 through 10). Results for anisotropic plates were also compared to
results obtained using the computer code VIPASA (see reference 11). In all
comparisons, results obtained from the analysis used in the present study were
found to be within a few percent of the results published in references 4 through
10 and the VIPASA results.

LAMINATE CONSTRUCTION AND NONDIMENSIONAL PARAMETERS

To characterize plate buckling behavior in terms of nondimensional parameters,
it is important to understand how laminate fiber orientation, stacking sequence,
and material properties affect their values. To accomplish this task and to
determine the numerical range of the nondimensional parameters for typical balanced
symmetric laminates, results are presented in this section for [(iﬂ)n]8 angle-ply

laminates, [<i45/0/9°)u]s and [(0/90/345)m]s quasi-isotropic laminates, and
[(+45/0,) 1  and [(45/90,) ] laminates typically referred to as orthotropic
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laminates. Each of these laminates possess specially orthotropic membrane
deformation states prior to buckling (i.e., the A;, and A,, laminate

constitutive terms are zero-valued).
Effects of Fiber Orientation and Stacking Sequence

Values of the nondimensional parameters g, vy, §, and the parameter
(Dy1/D35)'/* are shown in figures 2 and 3 for [+9] and [(345) |  angle-ply

laminates, respectively. Similar results are presented in figure 4 for
[(145/0/90)m]s and [(0/90/145)m]s quasi-isotropic laminates, and in figure 5 for

[(145/02)m]s_ and [(31&5/902)“]s laminates. All results presented in these

figures are for laminates with plies made of a typic8l graphite-epoxy material,

6

having a longitudinal modulus El- 18.5x106 psi, a transverse modulus E2- 1.6x10

psi, an inplane shear modulus G12- 0.832x106 psi, major Poisson’s ratio Vi~

0.35, and a nominal ply thickness of 0.005 in.

For the angle-ply laminates, the anisotropic parameters vy and § have
maximum values at @ = 39 and 51 degrees, respectively (see figure 2), and their
values diminish monotonically as the number of plies increases (see figure 3).
Between the values of 39 and 51 degrees, values of vy (and similarly §) vary by

only a couple of percent. The orthotropic parameters f and (Dll/Dzz)ll have

maximum values at § = 45 and 0 degrees, respectively, and their values remain
constant as the number of plies increases.

For the 0/45/90 family of quasi-isotropic laminates, the anisotropic
parameters vy and § shown in figure 4 asymptotically approach zero from above as
the number of plies increases. The solid lines and dashed lines shown in figure 4
indicate results for the [(0/90/_-!;45)m]s and [(i45/0/90)m]s laminates,

respectively. The results in figure 4 indicate that the orthotropic parameters §
and (D11/D22)1/4 for the [(1-_45/0/90)n]s laminates asymptotically approach the
value of one from above as the number of plies increases. The values of g and
(D“/Dn)l/4 for the [(0/90/_-!_»45)m]s laminates asymptotically approach the value
of one from above and below, respectively, as the number of plies increases. A

1/4

value of one for g and for (D,,/D,,) , and a value of zero for vy and for §

represent pure isotropy associated with a plate made from an essentially
homogeneous material like wrought aluminum plate.
The results presented in figure 5 for the [(145/02)n]s and [(+45/90,) ]

laminates indicate that aniéotropic parameters +y and § also asymptotically
approach zero .from above as the number of plies increases. The solid lines and
dashed lines shown in figure 5 indicate results for the [(145/02)m]s and

[(145/902)m]s laminates, respectively. The results in figure 5 indicate that both

laminate families have the same value of the orthotropic parameter S for a given
number of plies, and that B decreases monotonically to an asymptotic value as the
number of plies increases. In contrast, the [(145/02)m]s laminates have larger
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values of (Dl,/D,,)l/é than the [(145/902)n]- laminates. Moreover, the values

of (Dyy/Dyq) /* for the [(+45/90,) | and [(+45/0,) ], laminates diminish and

increase monotonically, respectively, as the number of plies increases.
Effects of Varying Material Properties

Results showing the effects of varying material properties on the
nondimensional parameters for [10]’ angle-ply laminates are presented in figures

6 through 9. In these figures, results are presented for laminates made of high-
strength graphite-epoxy material, ultra-high-modulus graphite-epoxy material, S-
glass-epoxy material, Kevlar-epoxy material, boron-epoxy material, and boron-
aluminum material. The moduli ratios EI/E2 and EZ/G12' and the major Poisson’'s

ratio 27 for these materials are given in Table 1.

The results presented in figure 6 show that maximum values of the orthotropic
parameter S occur at # = 45 degrees for all the material properties considered.
The largest values of B are, for most of the range of fiber orientation angles,
exhibited by laminates made of ultra-high-modulus graphite-epoxy material, followed
by laminates made of Kevlar-epoxy material, boron-epoxy material, high-strength
graphite-epoxy material, S-glass-epoxy material, and boron-aluminum material. The
1/4 is

also exhibited by laminates made of ultra-high-modulus graphite-epoxy material for
values of O £8< 45 degrees. The next highest values of (D,,/D,,)l/a in the

range of 0 < # < 45 degrees are exhibited by laminates made of Kevlar-epoxy
material, high-strength graphite-epoxy material, boron-epoxy material, S-glass-
epoxy material, and boron-aluminum material. In the range of 45 < 4 < 90 degrees,
the trend reverses.

The results presented in figures 8 and 9 indicate that the largest values for
the anisotropic parameters vy and § are also exhibited by laminates made of
ultra-high-modulus graphite-epoxy material followed by laminates made of Kevlar-
epoxy material, boron-epoxy material, high-strength graphite-epoxy material, S-
glass-epoxy material, and boron-aluminum material; i.e., the same trend as
exhibited by the orthotropic parameter S. The maximum values of vy and § for
each material system ranges between # = 31 and 59 degrees. For example, ¢ 1is a
maximum at 6 = 31 degrees (y = 0.13) and § 1s a maximum at # = 59 degrees (6 =
0.13) for laminates made of boron-aluminum material. For laminates made of ultra-
high-modulus graphite-epoxy material, v is a maximum at 4 = 40 degrees (y =
0.68), and § 1is a maximum at ¢ = 50 degrees (y = 0.68).

The results discussed in this section indicate a practical range of the
numerical values of the nondimensional parameters. In subsequent sections of this
paper, generic buckling results are presented for 0.2 < < 3.0, 0.5<

(DI,/Dzz)l/a <30, 0<y<0.8 and 0 <5 <0.8. Negative values for y and §

results presented in figure 7 indicate that the largest value of (D,,/D;;)

are possible for some laminates (e.g., [3—145]s laminates), but are not considered in

the present paper. An important physical consideration to keep in mind when using
the nondimensional parameters in an arbitrary sanmer to generate buckling design
charts is that together they must satisfy the condition that the strain energy of
the plate be positive valued. This condition is due to the thermodynamic
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restrictions that define the admissible range of lamina material properties, and
hence define the range of admissible plate bending stiffnesses. This condition was
enforced in the buckling analysis and accounts for the fact that some of the curves
shown on the generic buckling design charts presented herein do not span the entire
range of the nondimensional parameters specified herein.

BUCKLING RESULTS AND DISCUSSION

Results are presented in this section for clamped and simply supported plates
loaded by either axial compression or shear. In addition, results are presented
for plates subjected to combined loading of axial tension or compression and shear,
transverse tension or compression and shear, and transverse tension or compression
and axial compression. In each of the loading cases involving shear, a distinction
between positive and negative shear loadings is made whenever anisotropy is
present. A positive shear loading corresponds to a shear stress acting on the
pPlate edge y = b (see figure 1) in the positive x-coordinate direction. For each
of the loading cases considered in the present paper, results are first presented
for the familiar angle-ply laminates, and then generic results are presented in
terms of the nondimensional parameters described herein. The results presented for
the angle-ply laminates are calculated using lamina material properties of a
typical graphite-epoxy material. The properties used are the same ones that were
used to calculate the nondimensional parameters shown in figure 2.

Axial-Compression-Loaded Plates

Nondimensional buckling coefficients Kx are presented in figure 10 for
infinitely long clamped and simply supported [iﬂ]’ plates loaded in axial
compression, as a function of the fiber orientation angle #. The 4-ply [id]s

laminates are limiting cases, but they are useful in the present study since they
exhibit the highest degree of anisotropy of the angle-ply laminates. Similar
results are presented in figure 11 for [(145)1‘]s plates for m =1, 2, ..., 12,

The solid lines shown in figures 10 and 11 correspond to results for which
anisotropy is included in the analysis. The dashed lines in the figures correspond
to results for which the D;, and D,, anisotropic constitutive terms are neglected.

The buckling coefficients shown in figure 10 were calculated for increments in 4
equal to 1 degree. Similar sets of results for square finite-length plates are
presented in reference 1.

The results presented in figure 10 indicate that neglecting plate anisotropy
in the analysis always overestimates the plate bending stiffness, and thus always
yields nonconservative estimates of the buckling resistance. The largest buckling
coefficients for the orthotropic plates occur at § = 45 degrees, whereas the
largest ones for the anisotropic plates occur at slightly less than 45 degrees.

The largest difference between the orthotropic and anisotropic solutions for both
clamped and simply supported plates is about 25% of the corresponding orthotropic
solution,

The results presented in figure 11 indicate that the anisotropic solutions for
both clamped and simply supported plates converge monotonically from below to the
specially orthotropic solutions as the number of plies in the [(145)m]s laminates

increases. The largest difference between the anisotropic and orthotropic
solutions occurs for m = 1, and is approximately 25% of the corresponding
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orthotropic solution. The difference is approximately 5% for m = 2, and less than
18 for m = 6. o

Generic buckling results for clamped compression-loaded plates are presented
in figures 12 through 14 for a wide range of values of the four nondimensional
parameters. The results presented in figure 12 show buckling coefficients of

1/4 gor g = 3. Buckling

curves are presented in this figure for discrete values of vy = § ranging from 0
to 0.8. The [14513 laminates made of a typical graphite-epoxy material and an

clamped plates as a function of the parameter (D,,/D;,)

ultra-high-modulus graphite-epoxy material have values of vy and § equal to 0.52
and 0.68, respectively. Thus, a value of 0.8 corresponds to an extremely
anisotropic plate. The lines shown in figure 12 are parallel to the abscissa axis
and thus indicate that the buckling coefficients are independent of the parameter
(D‘l/D,,)l/a for the entire range of anisotropy shown in the figure. Similar plots
were made for clamped and simply supported plates in which the orthotropic
parameter S was varied and unequal values of 7y and § were used. The
additional results also show the buckling coefficients to be independent of the

1/&. This finding is consistent with the observation that

plots of buckling coefficient versus plate aspect ratio (length over width), for
finite-length plates, attenuate to constant values as the plate aspect ratio
becomes large. More specifically, in a finite-length plate, the bending stiffness

parameter (D,,/D,;)

ratio (D,l/D22)1/4 influences the size and number of buckles that occur along the

plate length. The number of buckles that occur along the plate length, in turn,
directly affects the value of the buckling coefficient for a given plate (as
indicated by the festoon nature of the buckling curves for finite-length plates).

For an infinitely long plate, the bending stiffness ratio (Dll/Dzz)l/a still

influences the size of the buckles, with respect to the basic periodic unit of an
infinitely long plate, but the number of buckles that occurs along the plate length
becomes meaningless. This independence of Kx with respect to (Dll/Dzz)l/a
represents an important simplification in that the buckling coefficients of long
plates can be represented by a single orthotropic parameter, namely pJ. However,
the parameter (Dlx/D,,)l/a is important since it does affect the aspect ratio of
the buckle pattern, and is useful in determining when classical plate theory
becomes insufficient and transverse shear deformation must be included in buckling
analyses.

Buckling coefficients are presented in figure 13 for clamped compression-
loaded plates as a function of the orthotropic parameter S for values of v = §
ranging from O to 0.8. Using the result that the buckling coefficients are

independent of (D‘I/D,,)l/a, results corresponding to particular laminates made of

a typical graphite-epoxy material and an ultra-high-modulus graphite-epoxy material
are also shown in figure 13 and are indicated by symbols. Symbols that represent
several laminates indicate that all of the laminates have the same buckling
coefficient. The results presented in this figure indicate that anisotropy can
significantly reduce buckling resistance, and that the effect of anisotropy tends
to diminish somewhat as f§ increases (i.e., the curves become spaced closer
together as B 1increases). Similar results were obtained for simply supported
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plates. These results indicate the same trends, and indicate that the effects of
varying B are slightly more pronounced for the clamped plates (i.e., the linear
portions of the curves for the clamped plates generally had a higher slope than the
corresponding curves for the simply supported plates).

Results are presented in figure 14 for clamped compression-loaded plates in
which the anisotropic parameters ~y and § are varied independently. Curves are
also presented in this figure for values of y and § ranging from 0 to 0.8.
Moreover, two sets of curves are shown in figure 14 corresponding to values of the
orthotropic parameter f equal to 1 and 3. The results presented in this figure
indicate that the buckling coefficients are more sensitive to the parameter §
than to . This observation can be seen by comparing the differences in the
values of the buckling coefficients in which v 1is held constant and § 1s varied
and vice versa. The results also support the previous statement presented herein
that the effect of anisotropy tends to diminish somewhat as B increases. A set
of results similar to those presented in figure 14 were obtained for simply
supported plates. These results indicate the same trends, and indicate that the
effects of varying B, v, and § are also slightly more pronounced for the clamped
plates.

Shear-Loaded Plates

Shear buckling coefficients Ks are presented in figure 15 for infinitely
long clamped and simply supported [-_!-_0]s plates, as a function of the fiber
orientation angle #. Similar results are presented in figure 16 for [(i‘*S)m]s

plates for m =1, 2, ..., 12. The solid and dotted lines shown in figures 15 and
16 correspond to results for which anisotropy is included in the analysis. The

solid lines correspond to a positive shear loading, and the dotted lines correspond
to a negative shear loading. The dashed lines in the figures correspond to results
for which anisotropy is neglected, and no distinction between positive and negative

shear is necessary. The buckling coefficients shown in figure 15 were calculated
for increments in ¢ equal to 1 degree.

The results presented in figure 15 indicate that neglecting plate anisotropy
in the analysis yields nonconservative estimates of the buckling resistance of
plates loaded in positive shear, and yields conservative estimates for the plates
loaded in negative shear. Moreover, the plates loaded in negative shear exhibit
the most buckling resistance. The largest buckling coefficients for the
orthotropic plates occur at § = 45 degrees, whereas the largest buckling
coefficients for the anisotropic plates loaded in negative shear are slightly more
than 45 degrees. The largest buckling coefficients for the clamped plates loaded
in positive shear occur at # = 0 and 90 degrees, and those for the corresponding
simply supported plates occur at 20 degrees. The largest difference between the
orthotropic and anisotropic solutions for both clamped and simply supported plates
1s approximately 48% of the corresponding orthotropic solution. This difference is
nearly twice that of the corresponding compression-loaded plates.

The results presented in figure 16 indicate that the anisotropic solutions for
both clamped and simply supported plates converge monotonically to the specially
orthotropic solutions as the number of plies in the [(145)m]s laminates

increases. The plates loaded by negative shear converge from above, and the plates
loaded by positive shear converge from below. The largest difference between the
anisotropic and orthotropic solutions occurs for m = 1, and is approximately 48%
of the corresponding orthotropic solution. The difference is approximately 7% for
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m = 6 and approximately 3.5¢ for m = 12, Comparing the results presented in
figures 11 and 16 indicates that the effects of anisotropy are much more pronounced
in shear-loaded plates than in compression-loaded plates.

Generic buckling results for clamped and simply supported shear-loaded plates
are presented in figures 17 through 19 for a wide range of values of the
nondimensional parameters. The results presented in figure 17 show buckling
1/4 for 8
= 3. Buckling curves are presented in this figure for values of y = § ranging
from 0 to 0.8. The results presented in figure 17 indicate that, like the
compression-loaded plates, the buckling coefficients are independent of the

coefficients of clamped plates as a function of the parameter (D;,/D,;)

parameter (D,,/D,,)1/4 for the entire range of anisotropy. Similar results were

obtained for clamped and simply supported plates in which the orthotropic parameter
p was varied. The additional results also show that the buckling coefficients are

independent of the parameter (D,;/D,;) 1/4 . The parameter (D,,/D;,) /4 vas found,

however, to affect the aspect ratio of the buckle pattern.

Buckling coefficients are presented in figure 18 for clamped shear-loaded
plates as a function of the orthotropic parameter g. Curves are also presented in
this figure for values of 7 = § ranging from 0 to 0.8. Applying the

simplification that the buckling coefficients are independent of (D,,/D;;)/%,

results corresponding to particular laminates made of a typical graphite-epoxy
material and an ultra-high-modulus graphite-epoxy material are indicated in the
figure by symbols. Like the compression-loaded plates, the results presented in
this figure indicate that anisotropy can significantly reducé buckling resistance
of shear-loaded plates, and that the effects of anisotropy tend to diminish
somevhat as f increases. Similar results were obtained for simply supported
plates. These results also indicate the same trends, and indicate that the effects
of varying B are slightly more pronounced for the clamped plates.

Results are presented in figure 19 for clamped shear-loaded plates as a
function of the anisotropic parameters vy and § with values ranging from 0 to
0.8, and for a value of 8 = 3. The results presented in figure 19 indicate the
same trend shown in figure 14 for the compression-loaded plates; i.e., the buckling
coefficients are more sensitive to the parameter § than to +y. Similar results
were obtained for B = 1. These results also indicate that the effects of
anisotropy tend to diminish somewhat as B increases. Results simlar to those
presented in figure 19 were obtained for simply supported plates with g =1 and
3. These results indicate the same trends, and once again indicate that the
effects of varying B, v, and § are slightly more pronounced for the clamped
plates than for the simply supported plates.

Plates Subjected to Combined Loadings

Results are presented in this section for plates subjected to combined
loadings. First, results are presented for plates subjected to axial tension or
compression loadings combined with shear loading. Next, results are presented for
plates subjected to transverse tension or compression loadings combined with shear
loading. The last set of results presented are for plates subjected to axial
compression combined with either transverse tension or compression.
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Axial Tension or Compression and Shear Loading

Buckling interaction curves are presented in figure 20 for infinitely long
clamped [idls plates subjected to axial tension or compression and shear loadings

for several values of fiber orientation angle ¢. The dashed lines shown in figure
20 correspond to results for which anisotropy is included in the analysis. The
solid lines in the figures correspond to results for which the D), and D,

anisotropic constitutive terms are neglected. Negative values of L correspond
to axial tension loadings, and negative values of Ks correspond to negative shear

loadings. Points of intersection of the interaction curves shown in the figure
with a straight line emanating from the origin of the plot constitute constant

values of ny/Nx (D11/D22)1/4 and are depicted in the figure for convenience.

The results presented in figure 20 indicate that the effects of anisotropy
manifest themselves as a phase shift of self-similar curves in the Kx- Ks plane.

The self-similar nature of the curves suggests that it may be possible to obtain
simple buckling interaction formulas like those existing for isotropic plates (see
reference 5). For plates loaded in positive shear, neglecting plate anisotropy in
an analysis yields buckling coefficients substantially larger than those
corresponding to the anisotropic solution. For plates loaded in negative shear,
however, this trend is reversed. Similar results were obtained for corresponding
simply supported plates, and these results exhibit exactly the same trends. In
addition, the results in figure 20, and the corresponding results for simply
supported plates, suggest that the buckling resistance of a compression-loaded
plate can be improved by applying a negative shear loading. For the plates with 4
= 45 degrees, the improvement is approximately 20% and 25% of the Kx values

corresponding to pure axial compression loading for the clamped and simply
supported plates, respectively. The results presented in figure 20 also indicate
that laminates with @ = 45 degrees yield the most buckling resistant interaction
curves for both of the cases in which anisotropy is included and neglected. This
trend is also exhibited by the simply supported plates.

Generic buckling results for clamped and simply supported plates subjected to
combined axial and shear loadings are presented in figures 21 through 23 also for a
wide range of values of the nondimensional parameters. ‘Additional results were
obtained for both boundary condition cases and several values of B8, v, and §.
These additional results indicate that the buckling interaction curves, such as
those presented in figures 21 through 23, are independent of the parameter
(Dy2/02) %

Buckling interaction curves are presented in figure 21 for clamped and simply
supported plates and for several values of the orthotropic parameter g. The
curves appearing in this figure are for values of 4y =6 =0. Using the
simplification that the buckling interaction curves are independent of

(D,l/Dzz)l/a. results corresponding to particular laminates can be obtained once

the value of B for the specific laminate is known, provided the corresponding
nondimensional anisotropic parameters are zero-valued. Good estimates of buckling
resistance can be otained for laminates with small values of the nondimensional
anisotropic parameters compared to unity. For example, the curves with g =1
correspond to solutions for isotropic plates, and give good approximations to the
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results for {(145/0/90)n]s quasi-isotropic laminates with 32 or more plies made

of a typical graphite-epoxy material. An important result shown in figure 21 is
that substantial gains in buckling resistance can be obtained by tailoring laminate
construction to increase the parameter §B.

Results are presented in figure 22 for clamped and simply supported plates
with values of vy = § ranging from O to 0.8 and for a value of S = 3. These
results also show that anisotropy is generally manifested as a phase shift of the
interaction curves in the Kx- Ks plane, and support the statement given

previously in the present paper that the buckling resistance of a compression-
loaded plate can be improved by applying a negative shear loading (as was seen for
the angle-ply laminates). For extremely anisotropic plates with vy = § = 0.8, the
improvement indicated by these results is approximately 90% and 85% of the l(.x

values corresponding to pure compression loading for the clamped and simply
supported plates, respectively. The results presented in figure 22 also indicate
that plates with 4 = § = 0 are the most buckling resistant of the plates loaded
by positive shear forces, whereas the plates with y = § = 0.8 are the most
buckling resistant of the plates loaded by negative shear forces. This trend is
also exhibited by the simply supported plates.

Results are presented in figure 23 for clamped plates with g =1 as a
function of the anisotropic parameters y and §. Curves are shown in this figure
for values of v = 0 and 0.4, and values of § ranging from O to 0.6. The results
presented in figure 23 indicate the same trend shown in figure 14 for the axial
compression-loaded plates and in figure 19 for the shear-loaded plates; i.e., the
buckling coefficients are more sensitive to the anisotropic parameter § than to

7.
Transverse Tension or Compression and Shear Loading

Buckling interaction curves are presented in figure 24 for infinitely long
clamped [iils plates subjected to transverse tension or compression and shear

loadings for several values of fiber orientation angle ¢@. The dashed lines shown
in figure 24 correspond to results for which anisotropy is included, and the solid
lines correspond to solutions for which it is neglected. Negative values of Ky

correspond to transverse tension loadings, and negative values of Ks correspond

to negative shear loadings. Points of intersection of the interaction curves shown
in the figure with a straight line emanating from the origin of the plot constitute

constant values of Ny/ny (D,l/D,z)l/a. The horizontal straight-line portions of

the buckling interaction curves indicate values of the buckling coefficients for
which a plate buckles into a wide column mode (Ky = 4 for clamped plates). For

this mode, the half-wave length ) shown in figure 1 approaches infinity in the
analysis.
The results presented in figure 24 indicate that the effects of anisotropy

also manifest themselves as a phase shift of self-similar curves in the K - l(.y

plane for these loading conditions. For plates loaded in positive shear,
neglecting plate anisotropy in an analysis yields buckling coefficients
substantially larger than those corresponding to the anisotropic solution. In
addition, the value of Ks at which the plate buckles into a wide column mode is

significantly overestimated. For plates loaded in negative shear, this trend is
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reversed. The coalescence of all the curves shown in figure 24 into the same
horizontal line segment at Ky = 4 indicates that anisotropy is unimportant for

plates that buckle into a wide column mode; i.e., the. transverse loading Ny

forces the plate to assume a deformation state that is not skewed (or it is skewed
at x = plus and minus infinity). Similar results were obtained for corresponding
simply supported plates, and these results exhibit exactly the same trends. The
simply supported plates buckle into a wide column mode at K.y - 1.

Generic buckling results for clamped and simply supported plates subjected to
combined axial and shear loadings are presented in figures 25 through 27.
Additional results were obtained for both boundary condition cases and several
values of B, v, and §. These additional results indicate that the buckling
interaction curves for this combination of loadings are also independent of the

Buckling interaction curves are presented in figure 25 for clamped and simply
supported plates with several values of the orthotropic parameter S and with v =
§ = 0. Once again, the fact that the buckling interaction curves are independent

of (Dll/Dzz)l/a permits results for particular laminates with zero-valued (or

small compared to unity) anisotropic parameters to be obtained directly from figure
25 once the value of B for the specific laminate is known. The results shown in
figure 25 indicate that substantial gains in buckling resistance can be obtained by
tailoring laminate construction to increase the parameter §S.

Generic buckling results are presented in figure 26 for clamped and simply
supported plates with values of vy = § ranging from 0 to 0.8 and for a value of 8
= 3. These results also confirm the results presented in figure 24 that show that
the anisotropy is generally manifested as a phase shift of the interaction curves

in the Ks- Ky plane, and that anisotropy does not affect the wide column buckling
mode. The results presented in figure 26 also indicate that plates with y = § = 0

are the most buckling resistant of the plates loaded by positive shear forces,
whereas the plates with y = § = 0.8 are the most buckling resistant of the plates
loaded by negative shear forces.

Results are presented in figure 27 for clamped plates with g = 3 1in which
the anisotropic parameters gy and § are varied independently. Buckling
interaction curves are shown in this figure for values of ¥ = 0 and 0.6, and
values of § ranging from O to 0.6. The results presented in figure 27 indicate
the plates loaded by transverse tension or compression and shear are also more
sensitive to the anisotropic parameter § than to 7.

Axial Compression and Transverse Tension or Compression Loading

Buckling interaction curves are presented in figure 28 for infinitely long
clamped and simply supported [iO]s plates subjected to transverse tension or

compression and axial compression loadings for several values of fiber orientation
angle 4. The dashed lines shown in figure 28 correspond to results for which
anisotropy is included in the analysis, and the solid lines correspond to results
for which it is neglected. Points of intersection of the interaction curves shown
in the figure with a straight line emanating from the origin of the plot constitute

constant values of Ny/Nx (DII/D,,)l/z. The horizontal straight-line portions of
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the buckling interaction curves indicate values of the buckling coefficients at
which a plate buckles intc a wide column mode. A

The results presented in figure 28 indicate that the effects of anisotropy for
plates subjected to these loading conditions also generally manifest themselves as
a phase shift of self-similar curves in the Kx- Ky plane. Neglecting plate

anisotropy in an analysis always yields buckling coefficients larger than those
corresponding to the anisotropic solution. Similar to the plates loaded by shear
and transverse compression, the value of Kx at which the plate buckles into a

wide column mode is substantially overestimated when anisotropy is neglected.

Generic buckling results for clamped and simply supported plates subjected to
combined axial and transverse loadings are presented in figures 29 through 31.
Additional results were obtained for both boundary condition cases and several
values of B, v, and §. These additional results indicate that the buckling
interaction curves for this combination of loadings are also independent of the
parameter (DII/D,,)IIA.

Buckling interaction curves are presented in figure 29 for clamped and simply
supported plates with several values of the orthotropic parameter g and with 7y =
§ = 0. Since the buckling interaction curves are independent of (Dll/Dgz)l/a,
results for particular laminates with zero-valued (or small compared to unity)
nondimensional anisotropic parameters can be obtained directly from figure 29 once
the value of B for the specific laminate is known. The results shown in figure
29 indicate that substantial gains in buckling resistance can be obtained when 2
increases.

Generic buckling results are presented in figure 30 for clamped plates with
values of v = § ranging from 0 to 0.6. Two sets of curves are shown in the
figure. The solid and dashed lines correspond to values of g =3 and 1,
respectively. These results also show a phase shift due to anisotropy, and show
that the effects of anisotropy are more pronounced for plates with g =1 than for
plates with g = 3. The results presented in figure 30 also indicate that plates
with 7y = § = 0 are the most buckling resistant of the plates when nonzero axial
loading is present.

Results are presented in figure 31 for clamped plates with g =3 as a
function of the anisotropic parameters vy and §. Curves are shown in this figure
for values of v = 0 and 0.6, and values of § ranging from 0 to 0.6. The
results presented in figure 31 indicate the plates loaded by transverse tension or
compression and axial compression are also generally more sensitive to the
parameter § than to 7.

CONCLUDING REMABKS

A parametric study of the buckling behavior of infinitely long symmetrically
laminated anisotropic plates subjected to combined loadings has been presented.
Loading conditions consisting of axial tension and compression, transverse tension
and compression, and shear were investigated for clamped and simply supported
plates. Results are presented that were obtained using a special purpose analysis
that was derived in terms of useful nondimensional parameters. The analysis was
found to be well suited for parametric studies. Buckling results are also
presented for some common laminate constructions, and generic buckling design
charts have been presented for a wide range of parameters. The generic design
charts are presented in terms of useful nondimensional parameters, and the
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dependence of the nondimensional parameters on lamifiste fiber orientation, stacking
sequence, and material properties is discussed. :

The results presented in the present paper show that. nondimensional parameters
can be very useful in presenting results in a concise manner for a wide range of
loading conditions, boundary conditions, and laminate constructions. Results are
presented that show that the effects of anisotropy are much more pronounced in
shear-loaded plates than in compression-loaded plates. In addition, the effects of
anisotropy on plates subjected to combined loadings are shown to be generally
manifested as phase shifts of self-similar buckling interaction curves. These
results indicate that the buckling resistance af long compression-loaded highly
anisotropic plates can be improved significantly by applying a shear loading with a
specific orientation. Moreover, it is shown that anisotropy reduces the buckling
resistance of biaxially compressed plates.

A substantial number of generic buckling results are presented in the present
paper for a wide range of values of the nondimensional parameters. In all cases
considered in the study, it is shown that the buckling coefficients of infinitely

long plates are independent of the bending stiffness ratio (Dll/Dzz)l/a. It is

also shown that large increases in bucklingsfasistincc can be obtained by tailoring
the laminate construction to increase the parameter S = (D,, + 2D3,)/(D11D22)1/2
and that the importance of anisotropy generally diminishes as B increases.

Results are also presented that show the buckling coefficients to be generally more

sensitive to the anisotropic parameter § - B,./(DUD,,)I/4 than to the

anisotropic parameter vy = Dl,/(D11D,,) 174 for the entire range of loadings and

boundary conditions considered.
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Table 1. Stiffness ratios and major Poisson’'s ratio for common lamina material

systems.

Material system El/E2 EZ/GIZ Vg
High-strength graphite-epoxy material 11.6 1.9 .35
Kevlar-epoxy material 13.8 2.7 .34
S-glass-epoxy material v 4.4 2.1 .25
Ultra-high-modulus graphite-epoxy material 50.0 1.5 . .26
Boron-epoxy material 10.0 4.3 .21
Boron-aluminum material 1.6 3.0 .23
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